Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

2021

The distribution characteristics of GPS cycle slip over the China mainland and adjacent region during the declining solar activity (2015--2018) period of solar cycle 24

The Global Positioning System (GPS) cycle slip has a marked impact on the application of communication and navigation systems and therefore is one of the main concerns of the user and designer of terminal systems. In this study, we analyzed the temporal and spatial characteristics of cycle slip events using the GPS data detected from 260 observations in the China sector during the period of the year 2015–2018. The results show that the temporal variations of cycle slips are dependent on the local time, seasons, and solar activity. It occurs from 20:00 LT to midnight and more frequently in the equinox months, especially in solar maximum years. The spatial distribution occurs mainly at southern sector below 25°N, which should be associated with the solar condition and ionospheric irregularities in the equatorial region, and the case analyses reveal that the variation of cycle slips has a similar tendency with the ionospheric scintillation monitored at low-latitude station Guangzhou explaining this relationship. Our results reflect the performance of the GPS signals monitored in the China area during the declining period of solar activity to some degree.

Geng, Wei; Huang, Wengeng; Liu, Guoqi; Liu, Siqing; Luo, Binxian; Chen, Yanhong;

Published by: Radio Science      Published on: may

YEAR: 2021     DOI: 10.1029/2020RS007196

Monitoring; Delays; Global positioning system; Indexes; Receivers; Satellite broadcasting; Signal to noise ratio

Effects of the 12 May 2021 Geomagnetic Storm on Georeferencing Precision

In this work, we present the positioning error analysis of the 12 May 2021 moderate geomagnetic storm. The storm happened during spring in the northern hemisphere (fall in the south). We selected 868 GNSS stations around the globe to study the ionospheric and the apparent position variations. We compared the day of the storm with the three previous days. The analysis shows the global impact of the storm. In the quiet days, 93\% of the stations had 3D errors less than 10 cm, while during the storm, only 41\% kept this level of accuracy. The higher impact was over the Up component. Although the stations have algorithms to correct ionospheric disturbances, the inaccuracies lasted for nine hours. The most severe effects on the positioning errors were noticed in the South American sector. More than 60\% of the perturbed stations were located in this region. We also studied the effects produced by two other similar geomagnetic storms that occurred on 27 March 2017 and on 5 August 2019. The comparison of the storms shows that the effects on position inaccuracies are not directly deductible neither from the characteristics of geomagnetic storms nor from enhancement and/or variations of the ionospheric plasma.

Valdés-Abreu, Juan; Díaz, Marcos; Báez, Juan; Stable-Sánchez, Yohadne;

Published by: Remote Sensing      Published on: jan

YEAR: 2021     DOI: 10.3390/rs14010038

Geomagnetic storms; total electron content; global navigation satellite system; Global positioning system; precise point positioning; rate of change of the tec index

Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24

The results presented in this paper are obtained from low-latitude ionospheric total electron content (TEC) variation during the chosen geomagnetic storm events happening during the solar cycle 24. We include the four intense geomagnetic storms that occurred on 26 September 2011, 15 July 2012, 19 February 2014 and 20 December 2015, depending upon the availability of TEC data. For this, we have used the TEC data from low-latitude station Varanasi (geographic latitude 25°, 16′N, geographic longitude 82°, 59′E and geomagnetic latitude 16°, 24′N) and an equatorial station Bengaluru (geographic latitude 13°, 02′N, geographic longitude 77°, 34′E and geomagnetic latitude 04°, 68′N). The storm-induced TEC changes at chosen stations have been discussed in terms of local time, storm wind effect, neutral wind, composition changes and variation in the dawn–dusk component of the interplanetary electric field (IEF Ey).

Singh, Abha; Rathore, Vishnu; Kumar, Sanjay; Rao, S.; Singh, Sudesh; Singh, A.;

Published by: Journal of Astrophysics and Astronomy      Published on: aug

YEAR: 2021     DOI: 10.1007/s12036-021-09774-8

geomagnetic storm; Global positioning system; low latitude; total electron contents



  1